
1 | P a g e D e p t o f C S E , M B I T S

SYSTEM CALLS

 System calls provide an interface to the services made

available by OS.

 System calls are generally available as routines written in

C and C++, although certain low-level tasks may have to

be written using assembly-language instructions.

 Example: consider a simple program to read data from one

file and copy them to another file. The first input that the

program will need is the names of the two files

 Systems execute thousands of system calls per second.

Most programmers never see this level of detail.

 Application developers design programs according to

application programming interface (API).

 API specifies a set of functions that are available to an

application programmer, including the parameters that are

passed to each function and the return values the

programmer can expect.

2 | P a g e D e p t o f C S E , M B I T S

 Most common three APIs are :

 Windows API for Windows systems

 POSIX API for UNIX-based systems (POSIX:

Portable OS Interface in UNIX)

 Java API for programs that run on the Java virtual

machine.

 Why would an application programmer prefer API rather

than invoking actual system calls?

 One benefit concerns program portability. An

application programmer designing a program using an

API can expect her program to compile and run on any

system that supports the same API

 Actual system calls can often be more detailed and

difficult to work with. API use is simple.

 There exists a strong correlation between a function

in the API and its associated system call within the

kernel.

 For most programming languages, the run-time support

system provides a system call interface that serves as the

link to system calls made available by OS.

 The system-call interface intercepts function calls in the

API and invokes the necessary system calls within OS

 Typically, a number is associated with each system call,

and the system-call interface maintains a table indexed

according to these numbers.

 The system call interface then invokes the intended system

call in the OS kernel and returns the status of the system

call and any return values.

 The caller need know nothing about how the system call is

implemented or what it does during execution.

3 | P a g e D e p t o f C S E , M B I T S

 Most of the details of the OS interface are hidden from the

programmer by the API and are managed by the run-time

support library.

 Three general methods are used to pass parameters to the

OS for a system call

 The simplest approach is to pass the parameters in

registers.

 If more parameters than registers, then parameters are

generally stored in a block or table in memory and the

address of the block is passed as a parameter in a register

 Parameters also can be placed, or pushed, onto the stack

by the program and popped off the stack by the OS

 Some OS prefer the block or stack method because those

approaches do not limit the number or length of parameters

being passed.

4 | P a g e D e p t o f C S E , M B I T S

TYPES OF SYSTEM CALLS

System calls can be grouped roughly into six major categories:

1. Process control

2. File management

3. Device management

4. Information maintenance

5. Communication

6. Protection

• Process control

◦ end, abort

◦ load, execute

◦ create process, terminate process

◦ get process attributes, set process attributes

◦ wait for time

◦ wait event, signal event

◦ allocate and free memory

• File management

◦ create file, delete file

◦ open, close

◦ read, write, reposition

◦ get file attributes, set file attributes

• Device management

◦ request device, release device

◦ read, write, reposition

◦ get device attributes, set device attributes

◦ logically attach or detach devices

• Information maintenance

◦ get time or date, set time or date

◦ get system data, set system data

◦ get process, file, or device attributes

5 | P a g e D e p t o f C S E , M B I T S

◦ set process, file, or device attributes

• Communication

◦ create, delete communication connection

◦ send, receive messages

◦ transfer status information

◦ attach or detach remote devices

 Protection

◦ set permission, get permission

◦ allow user, deny user

1. Process Control

 A running program needs to be able to halt its execution

either normally end() or abnormally abort().

 If currently running program is terminated abnormally, an

error message is generated.

 The status is written to disk and may be examined by a

debugger —a system program designed to aid the

programmer in finding and correcting errors, or bugs—to

determine the cause of the problem.

 Alert the user to the error and ask for guidance. Some

systems may allow for special recovery actions.

 A process or job executing one program may want to load()

and execute() another program.

 If both programs continue concurrently, it is

multiprogramming. The system call specifically for this

purpose create_process()

 Process control requires the ability to determine and reset

the attributes of a process, including the job’s priority, its

6 | P a g e D e p t o f C S E , M B I T S

maximum allowable execution time, and so on

(get_process_attributes() and set_process_attributes()).

 We may also want to terminate a job or process that we

created (terminate_process())

 We may want to wait for a certain amount of time to pass

(wait_time()).

 More probably, we will want to wait for a specific event to

occur (wait_event()). The jobs or processes should then

signal when that event has occurred (signal_event()).

 To ensure the integrity of the data being shared, OS often

provide system calls allowing a process to lock shared data.

Then, no other process can access the data until the lock is

released; acquire_lock() and release_lock().

 To start a new process, the UNIX shell executes a fork()

system call. Then, the selected program is loaded into

memory via an exec() system call, and the program is

executed. When the process is done, it executes an exit()

system call to terminate, returning to the invoking process a

status code of 0 or a nonzero error code.

2. File Management

 We may create() and delete() files. It requires the name of

the file and perhaps some of the file’s attributes.

 Once the file is created, we need to open() it and to use it.

We may also read(), write(), or reposition(). Finally, we

need to close() the file.

 We may need these same sets of operations for

directories

 File attributes include the file name, file type, protection

codes, accounting information, and so on.

7 | P a g e D e p t o f C S E , M B I T S

 Two system calls, get_file_attributes() and

set_file_attributes(), are required

 Some OS provide many more calls, such as calls for file

move() and copy(). Others might provide an API that

performs those operations using other system calls

3. Device Management

 The various resources controlled by OS can be thought of

as devices.

 Some of these devices are physical devices (for example,

disk drives), while others can be thought of as abstract or

virtual devices (for example, files).

 A system with multiple users may require to first request()

a device, to ensure exclusive use of it. After we are finished

with the device, we release() it. These functions are similar

to the open() and close() system calls for files.

 We can read(), write(), and reposition() the device, just as

we can with files.

 The similarity between I/O devices and files merge the

two into a combined file–device structure.

 Same set of system calls is used on both files and devices.

I/O devices are identified by special file names

4. Information Maintenance

 To return the current time and date, time() and date().

 Other system calls may return information about the

system, such as the number of current users, the version

number of the OS, the amount of free memory or disk

space, and so on.

8 | P a g e D e p t o f C S E , M B I T S

 Another set of system calls is helpful in debugging a

program. Many systems provide system calls to dump()

memory (display the contents of memory for tracing). This

provision is useful for debugging.

 OS keeps information about all its processes and may reset

the process information (get_process_attributes() and

set_process_attributes()).

5. Communication

 Two common models of inter-process communication

(IPC):

1. Message passing model

2. Shared-memory model.

 In the message-passing model,

 Communicating processes exchange messages with

one another to transfer information.

 Messages can be exchanged between the processes

either directly or indirectly through a common

mailbox.
 Before communication can take place, a connection

must be opened.

 The name of the other communicator must be known

 Be it another process on the same system or a process

on another computer connected by a communications

network.

 Each computer in a network has a host name by which

it is commonly known.

 A host also has a network identifier, such as an IP

address.

 Each process has a process name, and this name is

translated into an identifier

9 | P a g e D e p t o f C S E , M B I T S

 The get_hostid() and get_processid() system calls do

this translation.

 open_connection() and close_connection() system

calls are used

 The recipient process usually must give its permission

for communication to take place with an

accept_connection() call. Otherwise

reject_connection() or wait_for_connection() may be

used

 The source of the communication, known as the client,

and the receiving node, known as a server, then

exchange messages by using send_message() and

receive_message() system calls.

 The close_connection() call terminates the

communication.

 In the shared-memory model,

 Normally, the OS tries to prevent one process from

accessing another process’s memory.

 Shared memory requires that two or more

processes agree to remove this restriction.

 Processes use shared_memory_create() and

shared_memory_attach() system calls to create and

gain access to regions of memory owned by other

processes.

 They can then exchange information by read() and

write() in the shared areas.

 Message passing is useful for exchanging smaller

amounts of data

 It is also easier to implement

 It is used for inter-computer communication

10 | P a g e D e p t o f C S E , M B I T S

 Shared memory allows maximum speed and

convenience of communication

 It can be used when transfer takes place within a

computer.

 Problems exist, however, in the areas of protection and

synchronization between the processes sharing memory.

6. Protection

 Protection provides a mechanism for controlling access

to the resources provided by a computer system.

 System calls providing protection include set_permission()

and get_permission(), which manipulate the permission

settings of resources such as files and disks.

 The allow_user() and deny_user() system calls specify

whether particular users can—or cannot—be allowed

access to certain resources.

OPERATING SYSTEM STRUCTURE

1. Simple Structure (Monolithic Structure)

2. Layered Approach

3. Micro-kernels

4. Modular approach

1. Simple Structure (Monolithic Structure)

 It does not have well-defined structures.

 Such systems started as small, simple, and limited

systems and then grew beyond their original scope.

 MS-DOS is an example of such a system.

11 | P a g e D e p t o f C S E , M B I T S

 It was originally designed and implemented by a few

people who had no idea that it would become so popular.

 It was written to provide the most functionality in the

least space, so it was not divided into modules carefully.

 In MS-DOS, the interfaces and levels of functionality are

not well separated.

 Application programs are able to access the basic I/O

routines to write directly to the display and disk drives.

 Such freedom leaves MS-DOS vulnerable to malicious

programs, causing entire system crashes when user

programs fail.

 MS-DOS was also limited by the hardware of its era.

MS DOS Structure

 Another example of limited structuring is the original

UNIX OS.

 UNIX initially was limited by hardware functionality.

 It consists of two separable parts: the kernel and the

system programs

 Kernel is the core part of an OS

12 | P a g e D e p t o f C S E , M B I T S

 The kernel is further separated into a series of interfaces

and device drivers, which have been added and expanded

over the years as UNIX has evolved.

Traditional UNIX system structure

 Everything below the system-call interface and above the

physical hardware is the kernel.

 The kernel provides file systems, CPU scheduling,

memory management, and other OS functions

through system calls.

 A large amount of functionality to be combined into one

level.

 This monolithic structure was difficult to implement and

maintain.

2. Layered Approach

 OS can be broken into pieces that are smaller and more

appropriate than those allowed by the original MS DOS or

UNIX.

 OS can then retain much greater control over the computer

and over the applications that make use of that computer.

 Implementers have more freedom in changing the inner

working of the system and in creating modular OS

13 | P a g e D e p t o f C S E , M B I T S

 Under a top-down approach, the overall functionality and

features are determined and are separated into components.

 Information hiding is also important, because it leaves

programmers free to implement the low-level routines as

they see fit, provided that the external interface of the

routine stays unchanged and that the routine itself performs

the advertised task.

 Layered approach, in which the OS is broken into a number

of layers (levels)

 The bottom layer is the hardware (Layer 0)

 Highest is the user interface (Layer N)

 Layer is an implementation of an abstract object made up

of data and the operations that can manipulate those data.

 A typical OS layer M -consists of data structures and a set

of routines that can be invoked by higher-level layers.

 Layer M, in turn, can invoke operations on lower-level

layers.

14 | P a g e D e p t o f C S E , M B I T S

 Advantage of the layered approach is simplicity of

construction and debugging.

 The layers are selected so that each uses functions

(operations) and services of only lower-level layers.

 This approach simplifies debugging and system

verification.

 The first layer can be debugged without any concern for

the rest of the system, because, by definition, it uses only

the basic hardware (which is assumed correct) to

implement its functions.

 Once the first layer is debugged, its correct functioning

can be assumed while the second layer is debugged, and

so on.

 If an error is found during the debugging of a particular

layer, the error must be on that layer, because the layers

below it are already debugged.

 Each layer is implemented with only those operations

provided by lower level layers.

 A layer does not need to know how these operations are

implemented; it needs to know only what these operations

do.

 Hence, each layer hides the existence of certain data

structures, operations, and hardware from higher-level

layers.

 The major difficulty with the layered approach

involves appropriately defining the various layers.

 Because a layer can use only lower-level layers, careful

planning is necessary.

 Problem with layered implementations is that they tend to

be less efficient than other types.

15 | P a g e D e p t o f C S E , M B I T S

 At each layer, the parameters may be modified; data may

need to be passed, and so on.

 Each layer adds overhead to the system call; the net result

is a system call that takes longer than does one on a non-

layered system.

3. Micro-kernels

 As UNIX expanded, the kernel became large and difficult

to manage.

 Micro-kernel method structures OS by removing all

nonessential components from the kernel and

implementing them as system and user level programs.

 The result is a smaller kernel.

 There is a common agreement regarding which services

should remain in the kernel and which should be

implemented in user space.

 Micro-kernels provide minimal process and memory

management, in addition to a communication facility.

 The main function of the micro kernel is to provide a

communication facility between the client program and

the various services that are also running in user space.

 Communication is provided by message passing model

 The client program and service never interact directly.

Rather they communicate indirectly by exchanging

messages with the micro-kernel.

 Benefit of the microkernel approach is ease of

extending the OS.

 All new services are added to user space and

consequently do not require modification of the kernel.

 It is easier to port from one hardware design to another.

16 | P a g e D e p t o f C S E , M B I T S

 The microkernel also provides more security and

reliability, since most services are running as user, rather

than kernel-processes.

 If a service fails, the rest of the OS remains untouched.

 Unfortunately, micro-kernels can suffer from

performance decreases due to increased system

function overhead.

 Eg: Windows NT.

4. Modular approach

 The best current methodology for OS design involves

using object-oriented programming techniques to create a

modular kernel.

 Here, the kernel has a set of core components and links in

additional services either during boot time or during run

time.

17 | P a g e D e p t o f C S E , M B I T S

 Such a strategy uses dynamically loadable modules and

is common in modern implementations of UNIX, such as

Solaris, Linux, and Mac OS.

 The idea of the design is for the kernel to provide core

services while other services are implemented

dynamically, as the kernel is running.

 Linking services dynamically is preferable than adding

new features directly to the kernel, which would require

recompiling the kernel every time a change was made.

 For example, the Solaris OS structure is organized around

a core kernel with seven types of loadable kernel

modules:

1. Scheduling classes

2. File systems

3. Loadable system calls

4. Executable formats

5. STREAMS modules

6. Miscellaneous

7. Device and bus drivers

18 | P a g e D e p t o f C S E , M B I T S

 The overall result resembles a layered system in that each

kernel section has defined, protected interfaces

 But it is more flexible than a layered system in that any

module can call any other module.

 Furthermore, the approach is like the microkernel

approach in that the primary module has only core

functions and knowledge of how to load and

communicate with other modules

 But it is more efficient, because modules do not need to

invoke message passing in order to communicate.

 Linux also uses loadable kernel modules, primarily for

supporting device drivers and file systems.

SYSTEM BOOT PROCESS

 The procedure of starting a computer by loading the

kernel is known as booting the system.

 On most computer systems, a small piece of code known

as the bootstrap program or bootstrap loader locates

the kernel, loads it into main memory, and starts its

execution.

 Some computer systems, such as PCs, use a two-step

process in which a simple bootstrap loader fetches a more

complex boot program from disk, which in turn loads the

kernel.

 When a CPU is powered up or rebooted, the instruction

register is loaded with a predefined memory location, and

execution starts there.

 At that location is the initial bootstrap program. This

program is in the form of read-only memory (ROM),

19 | P a g e D e p t o f C S E , M B I T S

because the RAM is in an unknown state at system

startup.

 ROM is convenient because it needs no initialization and

cannot easily be infected by a computer virus.

 The bootstrap program can perform a variety of tasks.

 One task is to run diagnostics to determine the state of the

machine.

 If the diagnostics pass, the program can continue with the

booting steps.

 It can also initialize all aspects of the system, from CPU

registers to device controllers and the contents of main

memory.

 Some systems-such as cellular phones, PDAs, and

game consoles-store the entire OS in ROM.

 Storing in ROM is suitable for small OS

 A problem with this approach is that changing the

bootstrap code requires changing the ROM hardware

chips.

 Some systems resolve this problem by using erasable

programmable read-only memory (EPROM), which is

read only except when explicitly given a command to

become writable.

 All forms of ROM are also known as firmware, since

their characteristics fall somewhere between those of

hardware and those of software.

 A problem with firmware in general is that executing

code there is slower than executing code in RAM.

 Some systems store OS in firmware and copy it to RAM

for fast execution.

 A final issue with firmware is that it is relatively

expensive, so usually only small amounts are available.

20 | P a g e D e p t o f C S E , M B I T S

 For large OS or for systems that change frequently, the

bootstrap loader is stored in firmware, and the OS is on

disk.

 In this case, the bootstrap runs diagnostics and has a bit of

code that can read a single block at a fixed location (say

block zero) from disk into memory and execute the code

from that boot block

 The program stored in the boot block may be

sophisticated enough to load the entire OS into memory

and begin its execution.

 More typically, it is simple code (as it fits in a single disk

block) and knows only the address on disk and length of

the remainder of the bootstrap program.

 A disk that has a boot partition is called a boot disk or

system disk.

